“智”在掌控!来看信服云如何实现桌面云场景下的AIOps智能运维

文章来源:网络整理编辑:采集侠2022-08-08 08:28

导读:

[“智”在掌控!来看信服云如何实现桌面云场景下的AIOps智能运维

近日,QCon全球软件开发大会在广州举办。深信服创新研究院高级技术专家易佳在现场带来《深信服桌面云AIOps智能运维一体化方案演进》的主题演讲。

“智”在掌控!来看信服云如何实现桌面云场景下的AIOps智能运维

 

本次演讲重点分享了深信服在桌面云场景下AIOps的相关实战经验,以下是他的演讲内容摘要。

一、深信服桌面云简介

桌面云,即虚拟桌面架构(Virtual Desktop Infrastucture),俗称虚拟云桌面(VDI)。VDI的核心是云桌面的计算存储网络在服务器端完成,通过专有协议连接云桌面。易佳介绍,深信服桌面云具有移动性强、不受地域限制、集中管控、安全度高等特点。

二、挑战与方案设计

随着桌面云运维遇到第三方软件兼容性、蓝屏、木马等挑战,企业需要快速定位问题所在,如应用卡慢、响应延迟等,以及企业可能遇到私有云资源不足、硬件故障、网络等深层挑战,为此,深信服提出了桌面云智能运维一体化技术方案。

“智”在掌控!来看信服云如何实现桌面云场景下的AIOps智能运维

 

该方案包括数据服务和智能分析服务两大核心部分。其中,数据源主要为Logs、Traces和Metrics,表示桌面云的日志、链路和指标数据。

所有数据经由数据总线流入数据分析引擎,统一存储于InfluxDB、MongoDB等数据库,结合OpenAPI,供上层调度、分析和业务应用。

“智”在掌控!来看信服云如何实现桌面云场景下的AIOps智能运维

 

调度器部分,包括策略下发器、动作与建议编排、平台自身健康监测等;

算法分析部分,包含特征工程、训练与模型调优,常用算法如故障预测、异常检测、关联推理等;

业务系统部分,包括闲置虚拟机识别、虚拟机扩容缩容建议等,如果出现故障,对故障进行溯源和故障分析。

这里数据采集引擎使用的是Sangfor AIOps Agent,借鉴了telegraf、datadog等开源agent的思想,实现了基于Golang的插件化采集引擎,支持采集Windows、Linux等多类不同维度的指标数据,供给AIOps分析。

随着用户诉求和用户体量的的不断变化,AIOps数据模型与AI框架演进了三个版本。

“智”在掌控!来看信服云如何实现桌面云场景下的AIOps智能运维

 

第一个版本主要是一套轻量级监控分析系统,支持时序数据、告警数据、统计分析和容器化部署;支持主机、虚拟机数据采集做简单AI分析,适用于小规模用户。

第二个演进的版本是一个轻量级AIOps引擎,支持OpenAPI和数据统一调度。同时也在这个版本引入缓存机制,实现了存算分离。同时,更多的AI算法也得到了支持。

从第三个版本开始,实现了一套桌面云全栈AIOps引擎。在该版本中,面对数据上报的性能瓶颈问题,抽象了数据接口,实现负载均衡。

“智”在掌控!来看信服云如何实现桌面云场景下的AIOps智能运维

 

其次是设计了投递分级,内存磁盘双对列。对于优先级比较高的实际数据、实际体验影响比较关键的指标,优先保障入库。

“智”在掌控!来看信服云如何实现桌面云场景下的AIOps智能运维

 

同时,也做了多级分表,优化了数据结构。保留横向扩展能力,按集群分库分表。减少非必要的tag入库,如ip和hostname,只在tag中保留一个。

“智”在掌控!来看信服云如何实现桌面云场景下的AIOps智能运维

 

为了平衡实时性与准确度,减少重复数据,可以按采集指标区分不同采集周期,如CPU设定为10s采集一次,memory设定为20s采集一次;静态数据尽量只采集一次,如服务器型号、磁盘大小;加入了时间窗口内数据去重,如进程信息等;根据指标量与繁忙程度,动态调整采集周期。

最后,针对多维异构数据进行了冷热分层处理,冷数据存档供AI离线分析和模型训练,热数据实时监控和展示。

三、算法设计

深信服桌面云AIOps引擎提供业务自适应的AI调度,包括统一数据管理、统一模型管理和统一平台策略。

“智”在掌控!来看信服云如何实现桌面云场景下的AIOps智能运维

 

涉及的算法包括基于bagging策略的分段线性回归算法、基于网格搜索的缩扩容模型、基于资源约束算法和贪心策略的虚拟机新增模型、基于时间序列特征提取和随机森林的闲置资源识别模型等。

基于bagging策略的分段线性回归算法,目的是设计一套评分模型来评测当前虚拟机、主机和集群的健康程度。

基于CPU、内存、磁盘、告警等多维度学习,为每个维度建立弱学习器,最后综合多个弱学习器构建强学习器,计算得出整体的健康评分。

该算法综合评价多维核心资源消耗数据,以识别整体负载水平,结合专家经验设置的告警规则以捕捉偶发异常,运用bagging策略进行加权投票计算出机器的最终健康度评分。

“智”在掌控!来看信服云如何实现桌面云场景下的AIOps智能运维

 

基于网格搜索的缩扩容模型在公有云或混合云场景也比较常见。当虚拟机CPU和内存资源不够或过剩时,需要做精细化调度,在保证体验的同时,控制运营成本。

该模型基于历史的CPU和内存时序数据来计算有效峰值,根据计算得到的资源有效峰值数据判断是否命中缩容/扩容策略,若命中则进一步判断该虚拟机是否处于懒惰机制保护时间段,判断通过后基于网格搜索以及A/B Test方法给出虚拟机最佳推荐配置。

“智”在掌控!来看信服云如何实现桌面云场景下的AIOps智能运维

 

资源约束算法和贪心策略的虚拟机新增模型,是基于总体可容纳并发和当前并发来设计的,根据并发量来计算整个集群剩下多少内存和vCPU,读取集群整体配置情况以及当前虚拟机并发情况。

根据经验换算公式得到mhz单位的CPU容量剩余数据与内存剩余数据,捕捉虚拟机平均vCPU消耗数据后,基于资源约束算法结合贪心策略,输出可新增虚拟机建议和硬件扩容优化指引。

“智”在掌控!来看信服云如何实现桌面云场景下的AIOps智能运维

 

本文链接:http://www.soxunwang.com/kjrd/2022/0808/105530.html

声明:
1、此文内容为本网站刊发或转载企业宣传资讯,仅代表作者个人观点,供读者参考。
2、搜讯网所转载的稿件都会明确标注作者和来源,如您不希望被转载请及时与我们联系删除。
3、搜讯网的原创文章,请转载时务必注明文章作者和"来源:搜讯网",不尊重原创的行为搜讯网或将追究责任。
4、本站提供的图文仅供参考,不能作为任何咨询依据,专业问题请咨询专业人士,谨防受骗。

关注搜讯网微信号

扫描加关注!

搜讯网福利发放

最新热点 更多
相关阅读 更多