11篇入围论文,一次国际顶尖研讨会,百度AI ACL 2020见真章

文章来源:网络整理作者:采集侠2020-04-22 15:37

导读:

[11篇入围论文,一次国际顶尖研讨会,百度AI ACL 2020见真章

近日,国际自然语言处理领域顶级学术会议“国际计算语言学协会年会”(ACL 2020)公布了今年大会的论文录用结果。根据此前官方公布的数据,本届大会共收到 3429 篇投稿论文,投稿数量创下新高。其中,百度共有11篇论文被大会收录,再次展现出在自然语言处理领域的超高水准。

国际计算语言学协会(ACL,The Association for Computational Linguistics)是自然语言处理领域影响力最大、最具活力的国际学术组织之一,百度CTO王海峰曾任2013年 ACL 主席(President),是ACL历史上首位华人主席。

除了在国际AI学界的影响力外,ACL无论是审稿规范还是审稿质量,都是当今AI领域国际顶级会议中公认的翘楚。研究论文能够被其录用,不仅意味着研究成果得到了国际学术界的认可,也证明了研究本身在在实验严谨性、思路创新性等方面的实力。而此次ACL 2020的审稿周期,从去年12月一直持续到今年4月,相比往年几乎增加了一倍。虽然大会官方尚未公布今年整体论文录用率,但参照往年的评审过程和录用率,论文被其录取的难度依旧不会低。

百度的自然语言处理技术,在发展及应用上始终保持领先,一直被视为自然语言处理研究界的“第一梯队”。今年除了11篇论文被录用外,大会期间百度还将联合Google、Facebook、UPenn、清华大学等海内外顶尖企业及高校,共同举办首届同声传译研讨会(The 1st Workshop on Automatic Simultaneous Translation)。由于近期疫情影响,原定于今年7月5日至10日在美国西雅图举行的大会已改为线上举办,而上述同声传译研讨会也将改为在线上与专家学者们探讨。

本届大会百度被收录的11篇论文,覆盖了对话与交互系统、情感分析/预训练表示学习、NLP 文本生成与摘要、机器翻译/同声翻译、知识推理、AI辅助临床诊断等诸多自然语言处理界的前沿研究方向,提出了包括情感知识增强的语言模型预训练方法、基于图表示的多文档生成式摘要方法GraphSum等诸多新算法、新模型、新方法,不仅极大提升了相关领域的研究水平,也将推动人机交互、机器翻译、智慧医疗等场景的技术落地应用。

以下为ACL 2020百度被收录的11篇论文概览。

一、对话与交互系统

1Conversational Graph Grounded Policy Learning for Open-Domain Conversation Generation

11篇入围论文,一次国际顶尖研讨会,百度AI ACL 2020见真章

我们提出用图的形式捕捉对话转移规律作为先验信息,用于辅助开放域多轮对话策略学习。基于图,我们设计策略学习模型指导更加连贯和可控的多轮对话生成。首先,我们从对话语料库中构造一个对话图(CG),其中顶点表示“what to say”和“how to say”,边表示对话当前句与其回复句之间的自然转换。然后,我们提出了一个基于CG的策略学习框架,该框架通过图形遍历进行对话流规划,学习在每轮对话时从CG中识别出哪个顶点和如何从该顶点来指导回复生成。我们可以有效地利用CG来促进对话策略学习,具体而言:(1)可以基于它设计更有效的长期奖励;(2)它提供高质量的候选操作;(3)它让我们对策略有更多的控制。我们在两个基准语料库上进行了实验,结果证明了本文所提框架的有效性。

2PLATO: Pre-trained Dialogue Generation Model with Discrete Latent Variable

11篇入围论文,一次国际顶尖研讨会,百度AI ACL 2020见真章

研发开放领域(Open-Domain)的对话机器人,使得它能用自然语言与人自由地交流,一直是自然语言处理领域的终极目标之一。对话系统的挑战非常多,其中有两点非常重要,一是大规模开放域多轮对话数据匮乏;二是对话中涉及常识、领域知识和上下文,一个对话的上文(Context),往往可以对应多个不同回复(Response)的方向。PLATO首次提出将离散的隐变量结合Transformer结构,应用到通用对话领域。通过引入离散隐变量,可以对上文与回复之间的“一对多”关系进行有效建模。同时,通过利用大规模的与人人对话类似的语料,包括Reddit和Twitter,进行了生成模型的预训练,后续在有限的人人对话语料上进行微调,即可以取得高质量的生成效果。PLATO可以灵活支持多种对话,包括闲聊、知识聊天、对话问答等等。而文章最终公布的在三个公开对话数据集上的评测,PLATO都取得了新的最优效果。

尽管越来越多的工作证明了随着预训练和大规模语料的引入,自然语言处理领域开启了预训练然后微调的范式。在对话模型上,大规模预训练还处于初级阶段,需要继续深入探索。PLATO提出的隐变量空间预训练模型,可能成为端到端对话系统迈上一个新台阶的关键点之一。

3Towards Conversational Recommendation over Multi-Type Dialogs

11篇入围论文,一次国际顶尖研讨会,百度AI ACL 2020见真章

真实人机对话,涉及多类型对话(闲聊、任务型对话、问答等),如何自然的融合多类型对话是一个重要的挑战。为应对这个挑战,我们提出一个新的任务——多类型对话中的对话式推荐,期望Bot能够主动且自然地将对话从非推荐对话(比如『问答』)引导到推荐对话,然后基于收集到的用户兴趣及用户实时反馈通过多次交互完成最终的推荐目标。为便于研究这个任务,我们标注了一个包含多种对话类型、多领域和丰富对话逻辑(考虑用户实时反馈)的人-人对话式推荐数据集DuRec(1万个对话和16.4万个utterance)。针对每个配对:推荐寻求者(user)和推荐者(bot),存在多个序列对话,在每个对话中,推荐者使用丰富的交互行为主动引导一个多类型对话不断接近推荐目标。这个数据集允许我们系统地考察整个问题的不同部分,例如,如何自然地引导对话,如何与用户交互以便于推荐。最后,我们使用一个具有多对话目标驱动策略机制的对话生成框架在DuRec上建立基线结果,表明了该数据集的可用性,并为将来的研究设定了基线。

二、情感分析/预训练表示学习

4、SKEP: Sentiment Knowledge Enhanced Pre-training for Sentiment Analysis

11篇入围论文,一次国际顶尖研讨会,百度AI ACL 2020见真章

本文链接:http://www.soxunwang.com/kjrd/2020/0422/66534.html

声明:
1、搜讯网所转载的稿件都会明确标注作者和来源,如您不希望被转载请及时与我们联系删除。
2、搜讯网的原创文章,请转载时务必注明文章作者和"来源:搜讯网",不尊重原创的行为搜讯网或将追究责任。
3、本站提供的图文仅供参考,不能作为任何咨询依据,专业问题请咨询专业人士,谨防受骗。

关注搜讯网微信号

扫描加关注!

搜讯网福利发放

最新热点 更多
相关阅读 更多