肺、肝、心血管“全垒打”,阿里医疗AI 的进阶之路

文章来源:网络整理作者:采集侠2019-08-16 07:53

导读:

[肺、肝、心血管“全垒打”,阿里医疗AI 的进阶之路

2019年6月,阿里巴巴的医疗AI学会了心血管识别技术。它能从CTA影像中精准提取冠脉血管,效率比传统方法高出近百倍。

医学影像诊断是医疗AI的热门应用方向,影像诊断的疾病谱系异常宽阔,遍及肝、肺、骨、乳腺、甲状腺、心脏等器官,心血管是其中公认的高难度领域,少有玩家能够触及。

抵达心脏之前,阿里先后创下肺结节检测、肝结节诊断技术的世界级突破。两年时间从肺、肝到心血管的“三级跳”,使得阿里AI进阶为医学影像AI领域的“全垒打选手”。

阿里AI正以肉眼可见的速度朝着“全器官”识别的终点线进化,阿里的肺结节检测、骨科辅助诊疗等新技术都已落地商用。

一旦在横向的疾病谱系和纵向的技术落地上都形成突破,医疗AI就将驱动影像科的技术变革。

1.png

没有影像学就没有现代医学

没有影像学就没有现代医学,伦琴发现X射线之前,我们无法透过皮肉看清自己的骨骼和器官——如果不考虑人体解剖的话。

现在,典型的影像科工作图景出现在全世界的医院,一群医生盯着一堆电脑,每天数以千计的图像从医生眼底划过。在中国的大医院,影像科医生每个工作日与电脑对视的时间常常超过10小时。这群人就是医院的视力洼地。

人是肉做的,大量机械重复动作消耗了精力和智力,也成为误诊和漏诊的原因之一。

新的技术变革正在发生,人工智能敲响现代医学的大门。全球每年产生万亿GB数量级的医学影像,如果能让机器辅助医生处理片子,多少智力资源将被解放,医生能做更多重要的事,比如多分一点时间给病人。

这是个“望山跑死马”的愿景,看着不远,出发了才知道有多难。

针对个别器官、个别病种,AI尚且可作单点突围,但如要对各类器官全线取胜,对数据、算法、算力的要求就要提升几个量级。

同时,医学诊断是一套体系自洽、程序复杂并且不无骄傲的链路,新技术要嵌入其间,面临比其他场景难得多的落地关卡。

医疗AI为什么扎堆肺结节领域

肺结节检测是目前人们最熟悉的医学影像AI领地。

肿瘤开始的时候可能只是一个结节。但很多肺癌病人在初次就医时,得到的判处就是晚期。

对抗这个头号恶性肿瘤,最好早发现、早诊断、早治疗,可肺结节不容易被察觉,早期结节大多不到10mm,一般不会引发明显不适,很多人因此错过了最佳治疗时期。

比起潜在患者数量,影像科能够消化的病例远不及社会需求。拍摄胸部CT筛查肺结节,每个病例的CT 影像数量超过200张,一个医生每天最多处理几十例影像。高强度的疲劳战下,人工操作的误差不可避免。这是人工智能发挥价值的理想场景。

2017年7月,阿里AI在国际权威的肺结节检测大赛LUNA16上打破世界纪录,凭借89.7%的平均召回率(在样本数据中成功发现结节占比的比例)夺冠。

2.png

(LUNA16官网排行)

大赛要求参赛队伍在888份肺部CT样本中寻找肺结节,样本包含1186个肺结节,75%以上都小于10mm。阿里AI全程不用人工干预,自动读取病人的CT序列,直接输出检测到的肺结节。

2017年在人工智能业界有“肺结节年”之称——目前已知的大部分AI肺结节检测技术突破都发生在这一年。如今,光是国内公司就有至少几十家宣称实现了肺结节检测算法。

肺结节检测成为医学影像AI的入门级领域,算法门槛上的原因有二,首先肺结节影像相对“易读”,影像画面直观、干扰因素少、特征规律可循;其次与肺结节相关的公开数据多,获取便捷,机器训练成本较低。

遗憾的是,对不少医疗AI来说,肺结节既是起点,也是终点。

从肝、肺到心血管,阿里AI的“三级跳”

想要打通医学影像疾病谱系,必须祭出硬通货——算法。

2017年之后,阿里AI继续高速奔袭,连续拿下肝结节诊断和心脏冠脉提取的两项世界顶级赛事冠军,宣示了在算法领域无可匹敌的优势。

2018年12月,阿里AI从近百支队伍中脱颖而出,在全球LiTS(Liver Tumor Segmentation Challenge,肝脏肿瘤病灶区CT图像分割挑战)获得两项第一。

3.png

肝脏是人体管状物分布最密集的器官,内含门静脉、肝静脉、肝动脉、胆管系统等多套管状系统。肝结节形态多样,结节间灰度分布差异大,与周围组织灰度相似甚至没有清晰的边界,对AI的“视力”挑战大于肺结节。

阿里AI通过对CT图像层间信息和层内信息融合的网络结构分析解决了肝结节类别多样性的问题,用到了基于原子卷积的空间金字塔池化(Atrous Spatial Pyramid Pooling)、亚像素卷积(Sub Pixel Convolution)等技术。目前,阿里团队正进一步研究如何判断肝结节的良恶性。

半年后,在2019年的心脏冠脉中心线提取鹿特丹比赛(Rotterdam)上,阿里AI获得全自动提取赛事第一名,相关论文被国际顶级医学影像会议MICCAI 2019提前接收。

4.png

(阿里AI在0.5秒内全自动提取的单根心脏冠脉,冠脉提取成功后,医生可从重建的影像上快速发现病灶。右上为血管上的软斑块,右下为钙化斑块)

从CTA影像中准确提取心脏冠脉中心线是冠心病影像诊断的必备条件。通常的流程是,医生根据二维图像对血管进行三维重建,形成曲面重建视图,手动提取冠脉血管,寻找并标注血管斑块,判断血管病变性质,从而确定治疗手段。

心脏冠脉平均长度164mm,几何特性复杂、血管特别细小。比起肺结节的静态扫描图像,为不断跳动的心脏作三维图像重建棘手得多。传统的心脏冠脉中心线提取方法大多存在人工交互多、耗时长等缺点。

阿里AI提出了判别式冠脉追踪模型,三维卷积神经网络构成的模型,充分利用三维空间特征,从影像中迭代搜索完整血管,无需人工交互,提取单根冠脉血管平均耗时0.5秒,提取完整冠脉树用时不超过20秒,相比传统方法效率提升近百倍。

心血管疾病诊断的复杂性,导致AI医学影像识别在该领域应用极少。阿里的技术突破,让AI辅助医生进行心血管疾病诊断的未来变得近在咫尺。

本文链接:http://www.soxunwang.com/kjrd/2019/0816/57437.html

声明:搜讯网转载稿件,不代表本站观点,若侵权请来信告知,有异议请联系我们;

关注搜讯网微信号

扫描加关注!

搜讯网福利发放

最新热点 更多
相关阅读 更多